
Implementation of GPU-Accelerated Back Projection for EPR imaging

Zhiwei Qiao
1,

, Gage Redler
2
, Boris Epel

3
, Yuhua Qian

1
, Howard Halpern

3

1School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi 030006, China

2Rush Hospital, Chicago, IL, ,USA (Please Gage complete it)

3Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA

Abstract:

 Electron paramagnetic resonance (EPR) Imaging (EPRI) is a robust method for measuring in vivo oxygen

concentration (pO2). For 3D pulse EPRI, a commonly used reconstruction algorithm is the filtered backprojection

(FBP) algorithm, in which the backprojection process is computationally intensive and may be time consuming

when implemented on a CPU. A multistage implementation of the backprojection can be used for acceleration,

however it is not flexible (requires equal linear angle projection distribution) and may still be time consuming. In

this work, single-stage backprojection is implemented on a GPU (Graphics Processing Units) having 1152 cores to

accelerate the process. The GPU implementation results in acceleration by over a factor of 200 overall and by over a

factor of 3500 if only the computing time is considered. Some important experiences regarding the implementation

of GPU-accelerated backprojection for EPRI are summarized. The resulting accelerated image reconstruction is

useful for real-time image reconstruction monitoring and other time sensitive applications.

Keywords: GPU, acceleration, back projection, EPR, EPR imaging

1. Introduction

 Electron Paramagnetic Resonance Imaging (EPRI) is a technique which can image the spatial

distribution of paramagnetic spin probes [1]. The magnetic resonance images of water soluble

spin probes in vivo show high sensitivity to varied physiologic information [2]. Specialized spin

probes are designed to report on specific physiology [3]. EPRI can be used to measure the spatial

distribution of endogenous or introduced paramagnetic species, tissue redox status, pH, and

microviscosity [4].

 Images of oxygen concentration (pO2) can provide prognostic insight for anticancer therapies.

The oxygenation status of a tumor is an important determinant for the outcome of radiation

therapy. EPRI images of pO2 may provide necessary information for image guided dose painting,

in which an appropriate spatial distribution of radiation dose is chosen to focus more strongly on

radio-resistant hypoxic tumor regions [5].

 There are two main types for EPRI, pulse EPRI and continuous wave (CW) EPRI [6]. Pulse

EPRI is advantageous in certain situations compared to CW EPRI because of its faster imaging

*
 Corresponding author. Address: School of Computer and Information Technology, Shanxi University, Wucheng

Road 92, Taiyuan, Shanxi 030006, China.

E-mail: zhiweiqiaook@nuc.edu.cn

speed. For tomographic 3D pulse EPRI, the classical image reconstruction algorithm is the 3D

FBP algorithm [9][10], which derives from 3D inverse radon transform.

 The FBP algorithm consists of two steps, the filtration process and the backprojection

process. The filtration process is relatively fast, however the backprojection is very slow and,

when implemented on a CPU, limits image reconstruction speed.

 A multistage backprojection implementation can speed up the process. However, this

method has multiple restrictions, including uniform linear angular projection sampling. As an

example, the multistage method cannot directly reconstruct images from uniform solid angular

projection sampling, which has been shown to be an optimal sampling pattern. For this

projection scheme additional interpolation is required [8].

 GPU (Graphics Processing Unit) implementation of the backprojection process is a known

pathway for computation acceleration due to its favorable ratio of acceleration capability to cost

[11][12][13][14][15][16][17][18].

 In this work, the single-stage backprojection process is implemented on the GPU for

accelerated image reconstruction. In Sec. 2, the 3D FBP algorithm is introduced and the

computational complexity is analyzed. In Sec. 3, we demonstrate the GPU acceleration in detail.

In Sec. 4, we discuss our approach and summarize some important experiences. In Sec. 5, a short

conclusion is given.

2. The 3D FBP Algorithm and Its Time Complexity

 The 3D FBP formula comes from the 3D inverse Radon Transform [19]. Without derivation,

the formulation of 3D FBP is shown in Eq. (1) - (6).

𝑓(𝑟) = 𝑓(𝑥, 𝑦, 𝑧) = ∫ ∫ 𝑔(𝑡, 𝜑, 𝜃)
2𝜋

0

𝜋
2

0

sin 𝜃 𝑑𝜑𝑑𝜃 (1)

 here,

𝑡 = 𝑟 ∙ �⃑� = (𝑥, 𝑦, 𝑧) ∙ (𝐺𝑥, 𝐺𝑦, 𝐺𝑧) (2)

𝐺𝑥 = cos 𝜑 sin 𝜃 ; 𝐺𝑦 = sin 𝜑 sin 𝜃 ; 𝐺𝑧 = cos 𝜃 (3)

𝑔(𝑡, 𝜑, 𝜃) = 𝑝(𝑡, 𝜑, 𝜃) ∗ ℎ(𝑡) (4)

ℎ(𝑡) = ℱ−1{𝜔2} = ∫ 𝜔2𝑒𝑗2𝜋𝜔𝑡𝑑𝜔 (5)
+∞

−∞

𝑝(𝑡, 𝜑, 𝜃) = ∭ 𝑓(𝑥, 𝑦, 𝑧)𝛿(𝑟 ∙ �⃑� − 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 (6)
+∞

−∞

 In Eq. (1)-(6), 𝑓(𝑥, 𝑦, 𝑧) is a 3D object, 𝑝(𝑡, 𝜑, 𝜃) is a 1D spatial projection at angle (𝜑, 𝜃),

𝑔(𝑡, 𝜑, 𝜃) is the filtered projection, and ℎ(𝑡) is the unit impulse response of the parabola filter. In

Eq. (2), 𝑡 is the projection address of a point (𝑥, 𝑦, 𝑧) at the angle(𝜑, 𝜃). In Eq. (5), ℱ−1{∙}

represents the inverse Fourier transform.

 Assuming the spatial projections are distributed using a uniform solid angle pattern, we will

use a single-stage backprojection method to implement the FBP process.

 If we have Q spatial projections, each of which has S points, the projections can be stored in a

2D array ‘proj’ with size [S, Q]. If the reconstructed object has N rows, N columns and N slices,

the object can be stored in a 3-D array ‘object’ with size [N, N, N].

 The reconstruction pseudo-codes for the case above are shown below.

 Step1, Parabola filtration of all projections to obtain an array of filtered projections: ‘proj_filtered’.

 Step2, Weighting of the filtered projections with weighting factors accounting for nonuniformities in projection

distribution to obtain weighted projections: ‘proj_wt’.

 Step 3, Backprojection:

 for m=1:N

 for n=1:N

 for k=1:N

 Compute the 3D coordinates [x,y,z]of the point [m,n,k].

 x=(m-N/2)*d_of _object; % d_of_object is the sampling interval of the object.

 y=(n-N/2)*d_of_object;

 z=(n-N/2)*d_of_object;

 for ii=1:Q

 t=x*GX(ii)+y*GY(ii)+z*GZ(ii); %compute the projection address

 Do interpolation to get proj_wt(t,ii)

 object(m,n,k)=object(m,n,k)+proj_wt(t,ii);

 end

 end

 end

 end

 In the pseudo-code, the complexity of different interpolation methods influences the speed of

the reconstruction process. Zero-rank interpolation is the fastest interpolation method, whereas

cubic spline interpolation is very slow. A compromise is to use linear interpolation, which

consist of 3 addition and 2 multiplication operations.

 To quantify the time complexity of the backprojection process, we assume that a

multiplication operation is equivalent to 4 addition operations. The time complexity of the

backprojection process is 𝑂(𝑁3𝑄), for it requires the equivalent of 15𝑁3 + 26𝑁3𝑄 addition

operations. For example, for the case of 208 projections and a 3D object of size 128*128*128,

the backprojection process requires the equivalent of 85,983,440 addition operations. EPR image

reconstruction for experimental data using the parameters from the above example requires 83

seconds for the backprojection process, which is not acceptable for real-time reconstruction.

3. The GPU Acceleration Program and the Resulting Speedup Effect

 A GPU has hundreds of processor cores, which can simultaneously perform many operations

in parallel. Because of its advantages in parallelizable computations and cheaper price compared

to computer cluster or super computer, the GPU has often been a good choice for high

performance computing, especially for SPMD (Single Program Multi data) problems [11].

 For host application we used Matlab programming environment. Host application performed

data preprocessing and executed CUDA GPU code written in C code for backprojection.

 The part of the host program written in MATLAB language responsible for interaction

between host and GPU kernel is shown below.

H.1) object=zeros(N,N,N); define a 3-D array to store the reconstructed object.

H.2) k=parallel.gpu.CUDAKernel('EPRI_Kernel.ptx', 'EPRI_Kernel.cu'); define a CUDA kernel

H.3) k.ThreadBlockSize=N; set up the size of Block

H.4) k.GridSize=[N N]; set up the size of Grid

H.5) object_GPU=feval(k, object, proj_wt, GX, GY, GZ, d_object, N, d_proj, Q, S); Execute CUDA

kernel.

H.6) object=gather(object_GPU); Collect results from GPU Memory to Host Memory.

 The kernel program of backprojection process is shown below.

 __global__ void EPRI_Kernel(double *object, double *projection, double *GX, double *GY, double *GZ,

 double d_object, double N, double d_proj , double Q, double S)

 {

 K.1) double x, y, z,t,t0,value1,value2; %define variables to use in the kernel function

 K.2) int kk,m,n,k,t1,t2;

 K.3) m=threadIdx.x; %select the data and execution unit according to Thread struct

 K.4) n=blockIdx.x;

 K.5) k=blockIdx.y;

 K.6) x=(m+1-N/2)*d_object; %get the 3-D coordinate of the reconstructed points

 K.7) y=(n+1-N/2)*d_object;

 K.8) z=(k+1-N/2)*d_object;

 for(kk=1;kk<=Q;kk++) %reconstruct a point by summing all the filtered and weighted projections

 {

 K.9) t=x*GX[kk-1]+y*GY[kk-1]+z*GZ[kk-1]; %calculate the projecting address

 K.10) t0=t/d_proj; %get the discrete coordinate of the projecting address

 K.11) t1=floor(t0); %get the floor integer of the projecting address

 K.12) t2=ceil(t0); %get the ceil integer of the projecting address

 K.13) t0=t0+(S/2); % adjust the real discrete coordinates to be array index

 K.14) t1=t1+(S/2);

 K.15) t2=t2+(S/2);

 if(t1>=0&&t2<=S-1) %linear interpolation

 K.16) {value1=projection[(int)((kk-1)*S+t1)];

 K.17) value2=projection[(int)((kk-1)*S+t2)];

 K. 18) object[(int)(k*N*N+n*N+m)]+=value1+(value2-value1)*(t0-t1);}

 }

 }

For comparing the speeds of different backprojection implementations, we designed 3

programs. The first one is a GPU-based single-stage 3D FBP algorithm (GS), the second one is a

CPU-based multi-stage 3D FBP algorithm (CM), and the third one is a CPU-based single-stage

3D FBP algorithm (CS).

 As a test object we used a bottle phantom. It was imaged using 208 projections distributed

using uniform solid angle pattern. For every program, objects with sizes of 643 , 1003 ,

1283, 1503 and 2003 are reconstructed.

 The speed comparisons are shown in Fig. 1, 2 and 3 as well as Table 1.

4. Results and Discussion

4.1 Speedup effect and analysis of precision

 From Fig. 1 and Table 1, we can see that the GS method provides appreciable reconstruction

acceleration of up to a factor of 3523 compared to the CS method when transferring time is not

considered. Transferring the computation result from the device (GPU memory) to the host (PC

memory) is a time consuming process. However, even if the time for the process is considered,

the GS method is 208 times faster than the CS method. For current EPRI, this acceleration of

over a factor of 200 is sufficient for real-time reconstruction. For example, one 1283 object can

be reconstructed in only 0.4s using the GS method, whereas 83s are required to reconstruct using

CS method.

 Multistage backprojection can reduce the complexity of the back projection process. However,

as the size of the reconstructed object becomes large, the CM method becomes quite slow. From

Fig. 1 and Table 1, it can be seen that the acceleration factor for GS vs. CM, is about 59 when

transfer time is not considered and is 3.4 when considering transfer time. While this may argue

that the GS method does not have a big speed advantage compared to the CM method, the CM

method can only be used for the case of uniform linear angle sampling. Therefore, by

comparison, the GS method is a fast and flexible backprojection algorithm.

 From Fig. 2, we can see that the backprojection time is directly proportional to the size of the

object (number of voxels) for the CS, CM, and GS (including transfer time) methods. However,

the GPU backprojection computing time (GS method not including transfer time) is not

proportional to the size of the object. For example, GS reconstruction time (including

transferring time) for an object of size 2003 is about 31 times that for an object of size 643,

while GPU computing time for an object of size 2003 is only about 5 times that for an object of

size 643. This is a further proof that the GPU provides increasing acceleration with increasing

size of the reconstructed object.

 Note that total time for the GPU backprojection process, including data transferring time

from the GPU memory to the PC memory, is also directly proportional to the size of object.

Therefore, the acceleration factors for GS vs. CS and GS. vs. CM, considering transferring time,

are not sensitive to the object size, which can be seen from Fig.3. For all object sizes, the

average acceleration factor for GS vs. CS, considering transferring time, is about 208 and that for

GS vs. CM is about 3.4.

 The GPU can use double precision floating numbers, so the reconstructed object using the

GS method should be the same with the reconstructed object using the CS method. However, the

image precision of CM is a little lower than that of GS and CS, due to interpolation during the

conversion from a uniform solid angle projection distribution to a uniform linear angle projection

distribution, which can be seen in Fig. 4 and 5.

4.2 GPU parameters

 For GPU CUDA program design, the GPU parameters are an important consideration

because each type of GPU has a unique set of parameters. Table 2 [20][21] contains important

parameters, which have important impact on the GPU speedup effect. The parameters given are

for the unit used in this work. In the Table, SM means streaming multiprocessor and SP means

streaming processor.

4.3 Design method

 The Matlab host program design steps are shown below.

Step 1. define the CUDA kernel

Step 2. set up the Block size

Step 3. set up the Grid size

Step 4. Execute the CUDA kernel

Step 5. Collect result from GPU Memory to Host Memory.

 The CUDA Kernel frame is shown below.

 __global__ void KernelFunName(Parameters list)

 { (1) Variables declaring.

 (2) Select specific data according to specific thread ID and block ID.

 (3) Core program

 }

 If the host program is written in C language, we must allocate memory space for the GPU

memory and copy the data to it before calling the Kernel function. However, we should note that

it is not necessary to do this in the Matlab host program. In MATLAB one can directly use CPU

variables as the parameters of the GPU Kernel function. If one designs the host program

similarly to the C pattern, meaning allocating memory space for the GPU, the GPU acceleration

will be reduced.

4.4 Important parameters computing

 There are many factors which can impact the GPU acceleration efficiency. In order to

achieve optimal efficiency, it is the most important to load maximum threads to the streaming

multiprocessors (SM).

 In our GPU program, we design the thread structure as shown in program statement H. 3

and 4. If the reconstructed object has a size of 𝑁3, the number of threads in a block is 𝑁, and the

size of the grid is [𝑁, 𝑁]. We should note that block and thread are logical concepts but SM and

SP are physical concepts. For a specific GPU, there are logical confinements and physical

confinements. Only by setting up the logical parameters optimally under the confinements of the

physical parameters, one can obtain the optimal effect.

 As an example, let’s consider an object of size 1283 . From Table 2, we know that the

maximum thread number in a SM here is 2048 and maximum number of blocks in a SM is 16.

For the GPU program the thread number used is 128. Since 128 × 16 = 2048, the optimal

number of threads (2048) will be loaded to the SM. However, for an object size of 643, only

1024 threads will be loaded to the SM (64 × 16 = 1024). Therefore, 50% efficiency will be lost.

For object size of 2003, only 2000 threads will be loaded to the SM (200 × 10 = 2000 ; 200 ×

11 = 2200 > 2048). Therefore 48 threads will be idle.

 Every SM has specific register memory, local memory and shared memory sizes. They are

dynamically assigned to threads or blocks. The local variables of every thread and the shared

memory of every block may become a limitation of speedup efficiency. The SM for the GPU

card used here has 48KB shared memory, 512KB local memory and 64K 32bit register (equal to

256KB space). Register variables are much faster than memory variables[18]. It is therefore

advisable that all local variables are loaded in the register space. The local variables in the

Kernel function used here require 68 bytes, which can be calculated from program statement K.1

and 2. If 2048 threads were loaded in a SM, then the SM must assign 2048 × 68𝐵 = 136𝐾𝐵 <

256𝐾𝐵 register space to the local variables of the 2048 threads. Clearly, 256KB register space is

sufficient in this case, therefore the speedup effect will not be impacted by the available memory

resources.

4.5 Application experiences

 During the development process, we summarize some experiences which will be discussed

below.

(1) Matlab arrays are stored according to column rather than row, which is the storage

mode of C.

The majority of CUDA GPU programming literature focuses on CUDA C kernel functions,

which are called by a C host program. However, in this work, the host program is written in

Matlab which has a different layout of multi-dimensional arrays.

In C language, a multi-dimensional array is stored according to rows, but in Matlab

language a multi-dimensional array is stored according to columns.

For example, if there is a 3D array a[M,N,K] in a CUDA kernel function and the host

program is C, the index of the element a[m,n,k] is 𝑘𝑀𝑁 + 𝑚𝑁 + 𝑛 . However, if the host

program is Matlab, the index is 𝑘𝑀𝑁 + 𝑛𝑀 + 𝑚.

(2) It is not necessary to use the function ‘gpuArray’.

The GPU function ‘gpuArray’ can copy variables to the GPU memory and produce GPU

variables, which can be used in a GPU kernel function.

 Matlab GPU kernel functions can use CPU variables as input parameters, so it is advisable

and simpler to use CPU variables as input parameters for the kernel function rather than GPU

variables after a transferring process by ‘gpuArray’. We have found that use of ‘gpuArray’

hinders the resulting GPU acceleration.

(3) The function ‘gather’ is a time consuming function compared to the computing process

on GPU.

From Table 1, it can be seen that ‘gather’ is a time consuming process. For a 1283 object,

the GPU computing time is just 0.022s, yet the ‘gather’ process requires 0.378s, which is more

than 17 times greater than the computing time. Clearly, the transferring process from GPU to

CPU is a main factor impacting the speedup efficiency. In this case, the GPU card is connected

with the PC through PCIE 2.0 bus. PCIE 3.0 is much faster than PCIE 2.0, so using GPU cards

with PCIE 3.0 may provide better efficiency.

(4) The number of threads in a block being an integer multiple of 32 is not important.

Wrap is a concept on execution of threads by a SM. Some manuals suggest that the number

of threads in a block should be a multiple of 32 because one wrap has 32 threads. But through

many experiments, we find that this is not necessary, i.e. the number of threads in a block does

not have a strong impact on the speedup efficiency.

(5) Branch structures should not be used in the Kernel function.

Branch structures will impact the parallel effect of the 32 threads in a block. Therefore,

branch structures should be avoided in the kernel function. This is especially important if the

lengths of the branches in a branch structure are very different. This must be avoided to maintain

an efficient parallel execution. To avoid such branches, we must write multiple kernel functions,

each of which executes a particular branch.

(6) The GPU computing times are not direct proportional to the number of threads.

 Form Table 2, we can see that backprojection for a 643 object takes 0.011s and that

backprojection for a 1283 object takes only 0.022s rather than 0.088s which would be expected

from direct proportionality (
1283

643
= 8). Clearly, GPU computing time is not direct proportional to

the number of threads. This is a specific advantage of using the GPU program and is not true

when using the CPU program.

5. Conclusion

 In this work, we analyzed the computational complexity and resulting time requirements of

the 3D FBP algorithm, designed a GPU-accelerated backprojection program, analyzed the

speedup effect and image quality, proposed a CPU-Matlab host program design method and a

GPU-CUDA C kernel program, described how to calculate the GPU thread loading efficiency

and register allocation, and summarized our experiences on GPU programming.

 If one uses a Matlab host program to call a CUDA C kernel function, one should focus on

how to avoid branch structures, how to design the block and gird structure, and how to judge the

memory distribution status.

 One should note that the Matlab array is stored according to columns and that the function

‘gpuArray’ is not necessary. Also it is important to note that it is not necessary to restrict thread

number in a block to be an integer multiple of 32.

 The use of a GPU can help to speed up a SPMD problem enormously, and should therefore

be considered as the first choice for the acceleration technic. In the future, attention should be

paid to methods accelerating relatively time consuming data transfers between the CPU and GPU

to further optimize the GPU reconstruction acceleration.

Acknowledgement: This work is supported by NIH grants (EB002034 and CA98575). Please

Prof. Yuhua Qian write the grant number here.

References:

[1] Halpern, Howard J., David P. Spencer, Jerry van Polen, Michael K. Bowman, Alan C. Nelson, Elizabeth M.

Dowey, and Beverly A. Teicher. "Imaging radio frequency electron‐spin‐resonance spectrometer with high

resolution and sensitivity for in vivo measurements." Review of Scientific Instruments 60, no. 6 (1989): 1040-

1050.

[2] Epel, Boris, Chad R. Haney, Danielle Hleihel, Craig Wardrip, Eugene D. Barth, and Howard J. Halpern.

"Electron paramagnetic resonance oxygen imaging of a rabbit tumor using localized spin probe

delivery." Medical physics 37 (2010): 2553.

[3] Epel, Boris, Subramanian V. Sundramoorthy, Eugene D. Barth, Colin Mailer, and Howard J. Halpern.

"Comparison of 250 MHz electron spin echo and continuous wave oxygen EPR imaging methods for in vivo

applications." Medical Physics 38 (2011): 2045.

[4] Som, Subhojit, Lee C. Potter, Rizwan Ahmad, and Periannan Kuppusamy. "A parametric approach to spectral–

spatial EPR imaging." Journal of Magnetic Resonance 186, no. 1 (2007): 1-10.

[5] Redler, Gage, Boris Epel, and Howard J. Halpern. "Principal component analysis enhances SNR for dynamic

electron paramagnetic resonance oxygen imaging of cycling hypoxia in vivo." Magnetic Resonance in

Medicine (2013): 00-00.

[6] Ahn, Kang-Hyun, and Howard J. Halpern. "Spatially uniform sampling in 4-D EPR spectral-spatial

imaging." Journal of Magnetic Resonance 185, no. 1 (2007): 152-158.

[7] Ahn, Kang-Hyun, and Howard J. Halpern. "Simulation of 4D spectral-spatial EPR images." Journal of Magnetic

Resonance 187, no. 1 (2007): 1-9.

[8] Ahn, Kang-Hyun, and Howard J. Halpern. "Comparison of local and global angular interpolation applied to

spectral-spatial EPR image reconstruction. "Medical physics 34 (2007): 1047.

[9] Ahn, Kang-Hyun, and Howard J. Halpern. "Object dependent sweep width reduction with spectral–spatial EPR

imaging." Journal of Magnetic Resonance186, no. 1 (2007): 105-111.

[10] Ahmad, Rizwan, Bradley Clymer, Deepti S. Vikram, Yuanmu Deng, Hiroshi Hirata, Jay L. Zweier, and

Periannan Kuppusamy. "Enhanced resolution for EPR imaging by two-step deblurring." Journal of Magnetic

Resonance 184, no. 2 (2007): 246-257.

[11] Pratx, Guillem, and Lei Xing. "GPU computing in medical physics: A review." Medical physics 38 (2011):

2685.

[12] Uecker, Martin, Shuo Zhang, Dirk Voit, Alexander Karaus, Klaus‐Dietmar Merboldt, and Jens Frahm.

"Real‐time MRI at a resolution of 20 ms." NMR in Biomedicine 23, no. 8 (2010): 986-994.

[13] Uecker, Martin, Shuo Zhang, and Jens Frahm. "Nonlinear inverse reconstruction for real‐time MRI of the

human heart using undersampled radial FLASH." Magnetic Resonance in Medicine 63, no. 6 (2010): 1456-

1462.

[14] Sorensen, Thomas Sangild, David Atkinson, Tobias Schaeffter, and Michael Sass Hansen. "Real-time

reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit."

Medical Imaging, IEEE Transactions on 28, no. 12 (2009): 1974-1985.

[15] Ryoo, Shane, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-mei W.

Hwu. "Optimization principles and application performance evaluation of a multithreaded GPU using CUDA."

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, pp.

73-82. ACM, 2008.

[16] CUDA benchmark suite. http://www.crhc.uiuc.edu/impact/cudabench.html.

http://www.crhc.uiuc.edu/impact/cudabench.html

[17] NVIDIA CUDA. http://developer.nvidia.com/object/cuda.html.

[18] Applied Parallel Programming. http://courses.engr.illinois.edu/ece498al/Syllabus.html

[19] Som, Subhojit, Lee C. Potter, Rizwan Ahmad, Deepti S. Vikram, and Periannan Kuppusamy. "EPR oximetry

in three spatial dimensions using sparse spin distribution." Journal of Magnetic Resonance 193, no. 2 (2008):

210-217.

[20] Output of the Matlab function ‘gpuDevice’ running on a PC with Geforce GTX 760.

[21] CUDA. From Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/CUDA

http://developer.nvidia.com/object/cuda.html
http://courses.engr.illinois.edu/ece498al/Syllabus.html
http://en.wikipedia.org/wiki/CUDA

 Table1. Speed comparison of the backprojection process of the three reconstruction programs.

Object

Size

GS
Reconstruction

Time

(Computing time

+ gather time =

total time)

[s]

CM
Reconstruct

ion Time [s]

CS
Reconstruct

ion Time

[s]

Accelerati

on Factor

GS vs.

CM

not

considerin

g transfer

time

Accelerati

on Factor

GS vs.

CM

considerin

g transfer

time

Accelerati

on Factor

GS vs. CS

not

considerin

g transfer

time

Accelerati

on Factor

GS vs. CS

considerin

g transfer

time

643 0.011+0.049=0.06 0.203 13 18.4 3.4 1181 216

1003 0.016+0.229=0.245 0.624 44 39 2.55 2750 180

1283 0.022+0.378=0.400 1.108 83 50.4 2.7 3772 207

1503 0.029+0.605=0.634 1.910 142 65.8 3.01 4897 223

2003 0.065+1.442=1.507 8.050 326 123 5.34 5015 216

Average ---- ---- ---- 59.3

3.4 3523 208.4

Table 2. Some parameters of Geforce GTX 760

GPU Version Geforce GTX 760 Number of SM 6

Global Memory 4GB Number of cores in a SM 192

Number of cores (SP) 1152
Maximal Number of

blocks in a SM
16

Compute capability 3.0
Maximal Number of

threads in a SM
2048

Warp size 32 Register space of SM 64K*32bit

Maximal Number of threads

in a Block
1024 Shared Memory of SM 48KB

Maximal size of block [1024 1024 64] Local Memory of SM 512KB

Maximal size of grid
[2.1475e+09 65535

65535]

Fig. 1. Comparison of image reconstruction times for different backprojection implementation methods

demonstrating significant acceleration with the GPU.

64 3̂ 100 3̂ 128 3̂ 150 3̂ 200 3̂
10

-2

10
-1

10
0

10
1

10
2

10
3

The size of the object

T
im

e
 (

/s
)

GPU computing time

GPU total time

CPU & Multistage

CPU & Singlestage

Fig. 2 The reconstruction time trend with the increase of the object size. Note that the x axis and y axis are both

logarithmic scale. The red line is a reference line which is a direct proportion function. We can use it to test the four

time changing trends intuitively.

10
5

10
6

10
7

10
-2

10
-1

10
0

10
1

10
2

Size of the object

T
im

e
 (

/s
)

GPU computing time

GPU total time

CPU & Multistage

CPU & Singlestage

Reference line

Fig. 3 The acceleration factor trend with increasing object size. Acceleration factors for (a) GS vs. CM without

considering transfer time, (b) GS vs. CS without considering transfer time, (c) GS vs. CM considering transfer time,

and (d) GS vs. CS considering transfer time.

10
5

10
6

10
7

0

50

100

150

Size of object

S
p
e
e
d
u
p
 t

im
e
s

(a)

10
5

10
6

10
7

0

2000

4000

6000

Size of object

S
p
e
e
d
u
p
 t

im
e
s

(b)

10
5

10
6

10
7

2

3

4

5

6

Size of object

S
p
e
e
d
u
p
 t

im
e
s

(c)

10
5

10
6

10
7

180

200

220

240

Size of object

S
p
e
e
d
u
p
 t

im
e
s

(d)

Fig. 4. On the left is a slice from a 3D EPRI image reconstructed using the GS method. In the middle and

on the right are slices from 3D EPRI images reconstructed using the CS and CM methods respectively,

Slightly decreased precision in the CM reconstructed object can be seen.

Fig. 5 A comparison of intensity profile across the objects reconstructed by GPU single-stage, CPU

single-stage and CPU multistage FBP algorithms.

0 20 40 60 80 100 120 140
-1

0

1

2

3

4

5

6

7
x 10

-3

Voxels

D
e
n
s
it
y

GS and CS

CM

